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breed of upwind schemes have been produced since the
beginning of the 90s. To be practically useful, such aWhile enjoying demonstrated improvement in accuracy, effi-

ciency, and robustness over existing schemes, the advection up- scheme should hold robustness/stability for a wide range
stream splitting method (AUSM) has been found to have deficienc- of problems—Euler and Navier–Stokes equations, ideal
ies in some cases. This paper describes recent progress toward and nonequilibrium gas, and steady and unsteady flows.
improving the AUSM. We show that the improved scheme, termed

Our recent attempts toward deriving a scheme meetingAUSM1, features the following properties: (1) exact resolution of
these goals have proven to be promising, resulting in two1D contact and shock discontinuities, (2) positivity preserving of

scalar quantity such as the density, (3) free of ‘‘carbuncle phenome- classes of schemes: (1) the so-called AUSM [1, 2] and its
non,’’ (4) free of oscillations at the slowly moving shock, (5) algorith- derivatives, such as AUSMDV [6] by Wada and Liou and
mic simplicity, and (6) easy entension to treat other hyperbolic the present AUSM1 [3], and (2) the HUS [7–9] by Coquel
systems. In this paper, we lay out a general construction for the and Liou. The AUSMDV, a blending form of AUSM, flux-AUSM1 scheme and prove its heretofore unreported mathematical

difference, and flux-vector splittings, improves the ro-properties. Especially a CFL-like condition for positivity-preserving
bustness of AUSM in dealing with the collision of strongproperty is derived. This positivity-preserving proves to be tightly

related to the capability of calculating strong rarefaction and near shocks. However, the ‘‘carbuncle phenomenon’’ appears,
vacuum flows. Finally, results of numerical tests on many problems albeit much weaker than that resulting from the Roe
are given to confirm the capability and improvements on a variety scheme, and requires a fix. We suggest in [6] an effective
of problems including those failed by other well-known

procedure to cure the problem. The HUS (hybrid upwindschemes. Q 1996 Academic Press, Inc.
splitting) scheme, endows the nonlinear field with a flux-
vector splitting and the linear field with a low-diffusion
scheme, such as the Roe and Osher schemes. Unfortu-1. INTRODUCTION
nately, it also gives rise to the daunting ‘‘carbuncle phe-

Seeking an accurate numerical scheme for capturing nomenon,’’ even though it may be weak. Unlike AUSM1,
shock and contact discontinuities, with minimal numerical both AUSMDV and HUS schemes, however, do not have
dissipation and oscillations, has been a lasting challenge the exact property of capturing a stationary shock. The
to the computational fluid dynamicist as well as to the HUS is also more complicated and more expensive to
numerical analyst since the advent of computers. The 1980s compute than the other two.
witnessed an explosive interest and research in upwind Even though the original scheme, AUSM, enjoys re-
schemes for their capability of achieving high accuracy markable success, its drawbacks also surface. In a continu-
over a wide range of problems described by Euler or ing search for a near-perfect numerical flux scheme, we
Navier–Stokes equations. Today, upwind schemes un- report in this paper recent progress toward this end. We
doubtedly have become the main spatial discretization aim at addressing some fundamental properties in terms
techniques adopted in nearly all major codes. of mathematical analysis. As a result, a new version, termed

Roe in the survey paper [4] gives a comparative descrip- AUSM1, has been derived and is shown in this paper to
tion of the upwind schemes developed in the early 80s, have the following features: (1) exact resolution of a sta-
generally classified into the so-called flux-vector and flux- tionary normal shock or contact discontinuity, (2) posi-
difference splittings, and points out their successes and tivity-preserving property, and (3) improvement in accu-
failures. Quirk adds an interesting catalogue of situations racy over its predecessor AUSM and other popular
denying several current Riemann solvers success [5]. schemes, (4) simplicity and easy generalization to other

The current research is motivated by the desire to conservation laws. Shock resolution has been subject of
achieve both the efficiency of the flux-vector splitting and considerable interest for theoretical as well as practical

reasons. The relevance of resolving a contact discontinuitythe accuracy of the flux-difference splitting. Thus, a new
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to accurate prediction of boundary/shear layer was con- face. The performance of the numerical flux will vary,
depending on what set of properties it must meet.vincingly demonstrated by Van Leer et al. [18]. Property

(2) proves to be closely related to the robustness of the As a first step in the formulation of the AUSM family
of schemes, we recognize the convection and acousticscheme for species calculation and flow in rapid accelera-

tion, e.g., around a corner. The improvement in reliability/ waves as two physically distinct processes and write the
inviscid flux as a sum of the convective and pressure terms,accuracy achieved by the AUSM1 will become evident for

a number of test cases included in the present paper.
This paper is organized as follows. In Section 2 we give (5a)F 5 F(c) 1 P,

preliminaries and a brief summary of the AUSM [1, 2]. In
Section 3 we give development of the AUSM1 and prove

wheresome relevant properties. We analyze in Section 4 the
AUSM1 numerical flux and compare it with other flux
schemes. In Section 5 we stress the use of the pressure
boundary condition derived from the characteristic rela-

F(c) 5 Ma 1
r

ru

rht
2 , P 5 1

0

p

0
2 . (5b)tion. Higher order extension used in the context of AUSM1

is briefly given in Section 6. We will discuss in Section 7
the results of several test cases, together with comparisons
with other schemes. Finally a brief concluding remark is

Here the convective flux F(c) is expressed in terms of thegiven.
convective speed M and the passive scalar quantities indi-
cated in the brackets. The pressure flux P contains nothing2. PRELIMINARIES
but the pressure term.

Consider as an initial-value problem the one-dimen- Let us first denote the convection used in the present
sional (1D) system of conservation laws for ideal-gas flows, paper. Boldface characters denote a column vector of vari-

ables defined at the continuous level, the lower-case bold-
face indicates the numerical flux at the discrete level, andU

t
1

F
x

5 0, t . 0, 2y # x # y,

(1)
the calligraphic type used for the split Mach number and
pressure functions. Correspondingly we shall express the

U(x, 0) 5 U0(x), numerical flux f j11/2 as the sum of the numerical convective
flux f (c)

j11/2 and the numerical pressure flux, at the interface
where U 5 (r, ru, ret)T belongs to a phase space U [ j 1 1/2 straddling the jth and ( j 1 1)th cells,
R3, the inviscid flux F 5 (ru, ru2 1 p, ruht)T denotes a
smooth mapping F : U R R3. We denote the specific total

fj11/2 5 f (c)
j11/2 1 pj11/2 , (6a)energy et 5 e 1 u2/2 5 ht 2 p/r, and the ideal-gas equation

of state is assumed, p 5 (c 2 1)re, c 5 1.4.
For the numerical solution of (1), we shall consider where we further write

piecewise constant approximations Un11
j defined by the

explicit 3-point scheme in conservation form,
f (c)

j11/2 5 mj11/2Fj11/2 (6b)

Un11
j 5 Un

j 2 l(f n
j11/2 2 f n

j21/2), n [ N, j [ Z, (2)
and

where l 5 Dt/Dx, Dt and Dx being respectively the time
and space steps. Here, the numerical flux defined by

f n
j11/2 5 f(Un

j , Un
j11) (3) pj11/2 5 1

0

pj11/2

0
2 . (6c)

is assumed to be a Lipschitz continuous function and to
satisfy the consistency condition:

For the AUSM formulation [1], these interface quanti-
ties are summarized in the following: First we define ;j [ Z,f(U, U) 5 F(U). (4)

In the finite-volume formulation (2)–(3), the differences mj11/2 5 M 1
j 1 M 2

j11 , M 6
j 5 M 6(Mj), (7a)

among all the numerical schemes lie essentially in the defi-
pj11/2 5 P 1

j pj 1 P 2
j11pj11 , P 6

j 5 P 6(Mj), (7b)nition of the numerical flux fj11/2 evaluated at the cell inter-
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where termined by considering the nonlinear field when we define
their explicit functional forms.

The key for unifying the Mach number and velocity
formulations [1, 2] is the notion of common speed of sound
defined at the cell interface. This notion turns out to be

M 6(M) 55
1
2

(M 6 uMu), if uMu . 1,

6
1
4

(M 6 1)2, otherwise;

(8)
very useful. It allows, in 1D stationary flow, the exact
capturing of a contact discontinuity in the AUSMDV [6]
and, in addition, the exact capturing of a shock wave in
the AUSM1.and

Let the common speed of sound be denoted by aj11/2 .
We now rewrite the numerical convective flux in (6b) as

f (c)
j11/2 5 mj11/2aj11/2Fj11/2 , F 5 (r, ru, rht)T. (11)

P 6(M) 55
1
2

(1 6 sign(M)), if uMu $ 1,

1
4

(M 6 1)2(2 7 M), otherwise.

(9)

We note that the quantity F in (11) differs by a factor a
from that used in the AUSM, as shown in (10), and we
shall solely use the former hereafter in the paper. The

Then simple upwinding is applied to define Fj11/2 : scalar quantities in Fj11/2 again are given by the simple
upwinding (10), with the content of F now given in (11).
What remains is to define (mj11/2 , pj11/2) and aj11/2 for which

Fj11/2 5HFj , if mj11/2 $ 0,

Fj11 , otherwise;
(10) we shall develop the detailed framework in the following.

3.1. Definition of (mj11 , pj11/2)
F 5 (ra, rau, raht)T.

Anticipating contributions from ‘‘j’’ and ‘‘j 1 1’’ statesDespite successes brought by the scheme, we have also
to the interface Mach number mj11/2 , let us write for a 3-found drawbacks and concluded that further improvement
point scheme the mapping m : U 3 U R U [ R,is warranted. In fact, it is possible to derive an improved

scheme, termed AUSM1 [3], which contains AUSM as a
(12)mj11/2 5 m(Mj , Mj11).special case. In this new formulation, the two splittings

reported in [1, 2] (respectively, in terms of Mach number
Specifically we write mj11/2 as a sum of two individual com-and velocity) are unified and the scheme is capable of
ponents,exactly capturing, not only a stationary contact discontinu-

ity, but also a stationary shock. Furthermore, a set of more
(13)mj11/2 5 M 1(Mj) 1 M 2(Mj11),general Mach number and pressure splitting functions are

used in the AUSM1, resulting in improvement in accuracy,
where the superscripts ‘‘1’’ and ‘‘2’’ are understood tosuch as removing postshock overshoot and a glitch in the
be associated with the right- and left-running waves.slowly moving shock problem (see respectively Problem 4

For 1D conservation laws, the nonlinear characteristicand case ‘‘E’’ in Problem 2 in Section 7). In what follows,
equations arewe will present the detailed steps for constructing the

AUSM1 and give some interesting heretofore unreported
mathematical properties that bear physical consequences. dp 6 radu 5 0, along

dx
dt

5 u 6 a. (14)
In particular, the positivity-preserving property that allows
calculations of strong rarefaction and near vacuum flows.

This simply suggests that the velocity and pressure are
closely coupled and that the characteristic variables ex-3. AUSM1

pressed in (14) are propagating locally at the speeds u 6
a. For uMu , 1, the two waves move in opposite directionsAs we saw in the previous section, the AUSM scheme
and interact with each other. Hence the interface velocitysimply consists of two steps: (1) the definition of M 6 and
and pressure, composed of the interaction of these twoP 6, followed by (2), a simple upwind selection advection
waves, are constructed using (u 6 a) as basis functionsof Fj11/2 . In essence, we propose to deal with the genuinely
in the polynomial expansion. This suggests the followingnonlinear field associated with the eigenvalues (u 6 a) in
expansion in terms of (M 6 1):the first step and the linearly degenerate field associated

with the eigenvalue (u) in the second step. In other words,
the interface (numerical) velocity and pressure will be de- M 6 5 As(M 6 1) for uMu , 1. (15)
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This in fact is a form of eigenvalue expansion, utilizing
just the eigenvalues associated with the genuinely nonlin-
ear fields. Then from (13), the interface Mach number is
defined, as uMu , 1, by

mj11/2 5 As[(M 1 1)j 1 (M 2 1)j11]. (16)

This in fact corresponds to the simple average of Mj and
Mj11 . As in the Van Leer splitting [11], the present method
makes explicit use of the eigenvalues associated with the
nonlinear waves, M 6 1. Using the eigenvalues as a basis
for expressing the numerical fluxes is quite common in the

FIG. 1. M 6 vs M; solid line: b 5 0, ...: b 5 2ahA , 22 : b 5 As, ss :upwind formulation. For example, it comes naturally in the
b 5 Ak.

Steger–Warming and Roe fluxes as the Jacobian matrix is
explicitly expressible in terms of its eigenvalues. Specifi-
cally, Steger-Warming splitting [10] begins by grouping F as:

Consequently we have the following results.

LEMMA 3.1. Let mj11/2 be defined as in (13), then (1)
mj11/2 [ [Mj , Mj11], j [ Z, and (2) 0 , M 1 , 1 and 0 .F 5

r

2c 5(u 1 a) 1
1

u 1 a

H 1 ua
21 (u 2 a) 1

1

u 2 a

H 2 ua
2

(17)

M 2 . 21 as uMu , 1.

Proof. Let D 5 (mj11/2 2 Mj)(mj11/2 2 Mj11), substitut-
ing (13) and [M1] in D gives

1 2(c 1 1)u 1
1

u

u2/2
26 .

D 5 2(M 2(Mj) 2 M 2(Mj11))(M 1(Mj) 2 M 1(Mj11)) # 0,

where the product of two parentheses is nonnegative by
Similar explicit expansion can be found for the flux differ- virtue of [M3]. From [M2], [M3], and [M5], statement (2)
ence in the Roe scheme. immediately follows.

To remove the nondifferentiability of (15) when the sign
DEFINITION OF M 6. The split Mach numbers M 6,of eigenvalues changes, Van Leer [11] chose differentiable,

second-order polynomials:

(18)M 6 5 6Af(M 6 1)2. M 6(M) 5HAs(M 6 uMu), if uMu $ 1,

M 6
b (M), otherwise,

(19a)

It is evident that the above split formula (18) results in
an unsymmetric distribution of signals propagated by the with
characteristic speeds (M 6 1) as M ? 0 and becomes the
simple (symmetric) average as M tends to zero, leading to

M 6
b (M) 5 6As(M 6 1)2 6 b(M2 2 1)2, 2ahA # b # As, (19b)the formula used commonly in the pressure-based codes

for incompressible flows.
satisfy the properties [M1]–[M6].In the present study, we present a more general footing

for designing the split formulas. First we require that the Figure 1 displays the distribution of M 6(M) with various
split Mach number and pressure functions satisfy the fol- values of b; the polynomials M 6

b50 correspond to the Van
lowing properties listed in Propositions 3.1 and 3.2. Leer formula [11] and are the lowest degree polynomials

differentiable at M 5 61.PROPOSITION 3.1. Let the split Mach numbers M 6 be
Next, the interface pressure for a 3-point flux scheme ischosen such that they hold the following properties:

written in general as
[M1] M 1(M) 1 M 2(M) 5 M, for consistency.
[M2] M 1(M) $ 0 and M 2(M) # 0. pj11/2 5 p(Mj , pj , Mj11 , pj11), (20a)
[M3] M 6 are monotone increasing functions of M.
[M4] M 1(M) 5 2M 2(2M), i.e., a symmetry property. or specifically,
[M5] M 1(M) 5 M as M $ 1; M 2(M) 5 M as M # 2 1.
[M6] M 6 are continuously differentiable. (20b)pj11/2 5 P 1(Mj)pj 1 P 2(Mj11)pj11 .
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M 6
b the same inflection point at M 5 0, and no other

additional inflections in P 6
a for M [ [21, 1], except at the

end points M 5 61, then we get the following results.

LEMMA 3.2.

d 2M 6
b

dM2 (0) 5 0, ⇒ b 5
1
8

, (22a)

d 2P 6
a

dM2 (61) 5 0, ⇒ a 5 ahD . (22b)

FIG. 2. P 6 vs M; solid line: a 5 0, ...: a 5 2Df, 22 : a 5 2Af, ss : a 5ahD .
The curves corresponding to these values are included

in Figs. 1 and 2, respectively. These values are recom-
mended for use because this pair have given results that

PROPOSITION 3.2. We require that the split pressures P 6 are improved over the AUSM and comparable with the
satisfy the following properties: Roe splitting. While the above criteria may seem intuitive

and there might be a better choice, they have nevertheless
[P1] P 1(M) 1 P 2(M) 5 1, for consistency.

performed well on many calculations, including those pre-
[P2] 0 # P 6(M), as required by the physical constraint sented in the paper. Figure 3 displays the first-order solu-

that the pressure be nonnegative. tions obtained using the Roe and AUSM1 with a 5 b 5
0 and (a, b) 5 (ahD , Ak) as given in (22), clearly showing the[P3] P 1/M $ 0 and P 21/M # 0.
advantage of using the additional higher-degree terms in[P4] P 1(M) 5 P 2(2M).
(P 6

a , M 6
b ) and the accuracy comparable to that of the Roe

[P5] P 1 5 1 as M . 1; P 2 5 1 as M , 21. splitting. We note that the first-order solution is very mean-
[P6] P 6(M) are continuously differentiable. ingful for judging the performance of a scheme, for it re-

veals the sheer accuracy of the scheme. It is also fundamen-Similar assertion can be made about the pressure split-
tal because the higher-order scheme is built up from theting as for the Mach number.
first-order one. However, higher order accurate solutions

LEMMA 3.2. If the data pj . 0 ;j [ Z, then (1) pj11/2 are more useful in practice; hence we discuss higher order
remains positive and lies in [0, pj 1 pj11], (2) pj11/2 is a extension in Section 6 and present the second-order accu-
monotone function of both pj and pj11 and is monotone rate results in Section 7.
increasing in Mj but decreasing in Mj11 , and (3)
P 6(M) # 1 ;M [ R. 3.2. Definition of aj11/2

Proof. The proof of (1) follows directly by virtue of To achieve the unification of the velocity and Mach
[P2]. Since pj11/2 as expressed in (20b) is function of four number (c 5 u, M) splittings [1, 2], it is obvious that we
variables, one quickly proves the second and third state- can no longer use each respective speed of sound, aj or
ments by using [P2] and [P3], and [P5], respectively. aj11 , but instead should use a common one. The notion of

the common speed of sound, also employed in [6], turnsDEFINITION OF P 6. The split pressures
out to be very useful. It allows, in 1D stationary flow, the
exact capturing of the contact discontinuity in AUSMDV
[6] and, in addition, the exact capturing of the shock wave

P 6(M) 5HAs(1 6 sign(M)), if uMu $ 1,

P 6
a (M), otherwise.

(21a)
in AUSM1. This is also justifiable from the physical point
of view. Since the interface flux is viewed as a recipient
of contributions from both neighboring cells, it certainlywith
makes sense to use a common speed of sound defined
there as a basis for determining the Mach number and

P 6
a (M) 5 Af(M 6 1)2(2 7 M) 6 aM(M2 2 1)2, 2Df # a # ahD ,

subsequent upwinding. Let us now write(21b)

(23)aj11/2 5 a(Uj , Uj11).hold [P1]–[P6]. The P 6 versus M curves as shown in Fig. 2.
Next we consider the criteria for setting the values of

the parameters (a, b). It is noted that there exists an inflec- It is this freedom that allows us to make a favorable choice
to attain an exact capture of a stationary shock.tion point in P 6

a at M 5 0 ;a. Thus, if we also allow in
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and uj . aj . Let a*j be the critical speed of sound evaluated
at Uj (5UL), then the speed of sound used in the AUSM1,

aj11/2 5 a*2
j /uj , (26)

allows an exact resolution of the stationary shock for any
(a, b) in (19) and (21).

Remark. The critical speed of sound a* is calculated
via the isoenergetic condition,

ht 5
a2

c 2 1
1

1
2

u2 5
(c 1 1)a*2

2(c 2 1)
for ideal gas. (27)

It is well known that the Mach numbers based on the
speeds of sound a and a* indicate equally whether the flow
lies at the sonic or the supersonic or the subsonic regime
[12]. Namely, let M 5 u/a and M* 5 u/a*; then

M 5 1 ⇔ M* 5 1, M . 1 ⇔ M* . 1, M , 1 ⇔ M* , 1.
(28)

Hence, the critical speed of sound defined above can be
used as a reference to define the Mach number to be used
as the variable for upwinding.

Proof of Lemma 3.3. Referring to Fig. 4, we consider
at most one intermediate (numerical) state ‘‘i’’ between
the ‘‘L’’ and ‘‘R’’ states.

Let us now express the numerical flux at the interfaces
(denoted here respectively by 7As) enclosing the intermedi-
ate cell i. In order to explicitly include the undefined speed
of sound, we opt for using the velocity splitting. Similar to
(7a) (or referring to [2]), we write

FIG. 3. Shock tube (Sod) problem; first-order solutions by the Roe
(top), and AUSM1 schemes a 5 b 5 0 (middle) and (a, b) 5 (ahD , Ak)

u21/2 5 u1
L 1 u2

i 5 a21/2(M 1(ML) 1 M 2(Mi)). (29)(bottom).

Assuming ML . 1 and Mi , 1 without loss of generality
(since there must be a subsonic point connecting the super-

It is of interest to note that we can write aj11/2 for AUSM sonic point in the case of normal shock) and substituting
in the present AUSM1 formulation: property [M1] M 2(Mi) 5 (Mi 2 M 1(Mi)) and (19b) in

(29) gives

aj11/2 5Haj , if mj11/2 $ 0,

aj11 , otherwise.
(24) u21/2 5 uL 2 (ui 2 a21/2)2g1(ui , a21/2), (30)

Thus, AUSM belongs to a special case of AUSM1.

LEMMA 3.3. Consider a 1D stationary shock problem:

U 5HUL , x # xj ,

UR , x . xj ,
(25)

FIG. 4. One intermediate shock cell between ‘‘L’’ and ‘‘R.’’where UL and UR are related via the normal shock relation
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where we define This requirement in fact enforces the conservation of fluxes
by relating the upstream supersonic ‘‘L’’ state to the down-
stream subsonic ‘‘R’’ state. It is desirable to express a21/2

g6(u, a) 5
1

4a S1 1 4b Su
a

6 1D2D . (31) in terms of the upstream state ‘‘L.’’ In fact, the well-known
Prandtl relation (see, for example, [12]) is at hand for use,

It is easy to show u21/2 . 0 as uL . ui ; hence by (6) we get
uRuL 5 a*2

L 5 a*2
R 5

2
c 1 1

a2
t , (39)

where at is the speed of sound based on the total enthalpy
f21/2 5 1

ṁ21/2

uLṁ21/2 1 p21/2

htLṁ21/2

2 , ṁ21/2 5 rLu21/2 . (32) ht . Putting L R j and R R j 1 1, we get (26). And since
the above algebra is independent of specific values of (a,
b), the proof now is complete.

Note that the formula (26) is valid for uL . a*L . We nowThis flux must be balanced with FL as the ‘‘L’’ state is
must extend it to other conditions such as subsonic speedfixed. Hence, a simple algebra yields
or uL , 0; we suggest the following formula for M [ R:

Su21/2

p21/2
D5SuL

pL
D . (33) aj11/2 5 min(ãL , ãR), ã 5 a*2/max(a*, uuu). (40)

That is, ã is taken to be a* when uuu , a*.
These two conditions can be satisfied exactly, for any (ri , In Fig. 5 we show the numerical result for a single station-
pi), by requiring only one condition:

ary shock discontinuity. The present AUSM1, like Roe
splitting, produces the exact solution. In contrast, the

ui 5 a21/2 . (34) AUSM and Van Leer splittings (not shown) resolve the
shock with two intermediate points [11]. However, when

Let us now turn to the ‘‘As’’ face. The interface velocity be- the specific speed of sound (Eq. (26)) is used in the Van
comes Leer–Hänel splitting [15], an exact shock is astonish-

ingly reproduced.
u1/2 5 (ui 1 a1/2)2g2(ui , a1/2) 2 (uR 2 a1/2)2g1(uR , a1/2) . 0. Other formulas may be used for the reason of simplicity,

(35) but at the expense of losing the above property. Some
obvious choices are

The inequality holds as ui . uR is expected. Again substitut-
ing in (6) yields aj11/2 5 As(aj 1 aj11), (41a)

aj11/2 5 Ïajaj11. (41b)

In summary, the above splittings for both the advectivef1/2 5 1
ṁ1/2

uiṁ1/2 1 p1/2

htiṁ1/2

2 , ṁ1/2 5 riu1/2 . (36)
and pressure terms completely define the Euler numerical
flux. The AUSM1 algorithm can be simply summarized
as follows:

Let j and j 1 1 states be given, thenIn order to eliminate this intermediate state, we let
(A1) Mj 5 uj/aj11/2 , and Mj11 5 uj11/aj11/2 via (40),

(A2) mj11/2 5 M 1(Mj) 1 M 21(Mj11), and m6
j11/2 5

As(mj11/2 6 umj11/2u), pj11/2 5 P 1(Mj)pj 1 P 2(Mj11)pj11 ,Ui 5 UR , or 1
ui

ri

pi
25 1

uR

rR

pR
2 . (37)

(A3) fj11/2 5 aj11/2 5m1
j11/2 1

r

ru

rht
2

j

1 m2
j11/2 1

r

ru

rht
2

j11

6It turns out that the last two requirements in the above
equation respectively for ri and pi are automatically satis-
fied if (34) and the first requirement, uR 5 ui , are set. Thus,

1 1
0

pj11/2

0
2 .

a21/2 5 uR 5 ui . (38)
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FIG. 5. Stationary shock, ML 5 25.

4. ANALYSIS OF AUSM1 scheme in which the Jacobian matrix is essential, there is
a need for redefining the averaged/intermediate states as

The numerical flux defined above can be rewritten as additional equations are included, which can become
somewhat tricky.

fj11/2 5 aj11/2 [Asmj11/2(Fj 1 Fj11)
(42)

Next, we write well-known numerical fluxes in a form
similar to (42) for comparison. Let Dj11/2( ) 5 ( )j11 2 ( )j :2 Asumj11/2u(Fj11 2 Fj)] 1 pj11/2 ,

Roe [13],
where F is defined in (11) and (a, m, p)j11/2 are defined in

fj11/2 5 As[(uF)j 1 (uF)j11] 2 AsuA(Û)u Dj11/2U
(43a)

Section 3.1. Several observations are in order.
The first term on the RHS is clearly not a simple average 1 As(Pj 1 Pj11),

of ‘‘j’’ and ‘‘j 1 1’’ states, but rather a Mach number-
weighted average. The dissipation coefficient umj11/2u is where Û is the Roe-averaged state and uAu 5 A1 2 A2 in
merely a scalar as opposed to a matrix, thus requiring only the usual sense.
O(n) operations, where n is the number of equations to

Osher–Solomon[14],be solved.
The present scheme does not involve differentiation,

specifically the Jacobian matrix, in the evaluation of fj11/2 5
1
2

[(uF)j 1 (uF)j11] 2
1
2
EUj11

Uj

uA(U)u dU

(43b)fj11/2 . Since mj11/2 says nothing about the dimension of f,
the AUSM schemes are readily extendable to a general

1
1
2

(Pj 1 Pj11).equation of state and to chemical and thermal nonequilib-
rium flows [29, 30] or to turbulence model equations. All
it takes is to append additional conservation equations Steger–Warming [10],
using the same convective speed mj11/2 . Again, the cost is
only linearly increased with the additional conservation fj11/2 5 As[(uF)j 1 (uF)j11] 2 As Dj11/2uAuU 1 As(Pj 1 Pj11).

(43c)equations considered. In the case of the Roe or Osher
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Van Leer–Hänel [11, 15], where we let

DP (M) 5 P 1(M) 2 P 2(M) (47a)fj11/2 5 As[(MaF)j 1 (MaF)j11] 2 As Dj11/2auM uF
(43d)

1 pj11/2 , uM u 5 M 1 2 M 2. and

It is noted in (43d) that the present notation M 6, rather dpj11/2 5 DP (Mj11)pj11 2 DP (Mj)pj . (47b)
than M6 as in [11], is used for the convective dissipation
flux. Also b 5 0 could be set in M 6 if the Van Leer formula The above dpj11/2 is the diffusive term responsible for ren-
were strictly adopted. dering the centered average upwinded. Substitution of (21)

The Steger–Warming and Roe splittings differ only in results in the simple formula:
the evaluation of the absolute Jacobian. This absolute Ja-
cobian for the latter is evaluated at the well-known ‘‘Roe- DP (M)
average’’ state using both the ‘‘j’’ and ‘‘j 1 1’’ states and
is taken outside of the difference operator. In fact, this 5 5

sign(M), if uMu $ 1,

M
2

h3 2 M2 1 4a(M2 2 1)2j, otherwise.
(48)

comparison reveals clearly that a striking difference in
form between the FVS and FDS lies in whether the dissipa-
tion matrix (or scalar) is differenced. In this regard, the

Again, we define a mean value M̂(Mj , Mj11 , pj , pj11)present scheme may appear formally close to a FDS, but
such thatit differs in the averaged term. On the other hand, the

method retains the efficiency of the Van Leer scheme in
dpj11/2 5 DP (M̂)(pj11 2 pj). (49)defining the dissipation term. Consequently, the present

scheme is neither FDS nor FVS, but rather a hybrid one.
Here M̂ need not be equal to M̃ defined in (44). We nowAs an aside, the Roe flux difference scheme expressed
arrive at the dissipation fluxes—Eqs. (44) and (49)—as Df 5 uA(Û)u DU may be interpreted as a formal applica-
recently proposed by Jameson [25] in the CUSP scheme,tion of the mean-value theorem with the exact definition
by setting a parameter ao in his scheme, ao 5 2b 1 As andof the mean (average) state, Û 5 U(Uj , Uj11). This idea
a 5 0. We note that the added fluxes can be regarded asalso turns out to be useful in the following section.
an enhanced and a FDS variation of the Van Leer flux
vector splitting, (43d); it is however an approximate one4.1. Derivation of Jameson’s CUSP Scheme [25]
to the AUSM1 because uM u(M̃) is not equal to umj11/2u.

The above observation, moreover, suggests that we may Unfortunately, this formula does not preserve contact dis-
make a quick alternative to the dissipation term in the Van continuity unless ao 5 0. But for capturing shocks, this
Leer–Hänel formula (43d), by taking the term—uM u 5 constant ao needs to be adjusted and it is in general prob-
M 1 2 M 2—out of the difference operator in order to lem-dependent. Furthermore, there is an issue concerning
mimic the flux-difference splitting. That is, we rewrite the the proper definition of the averaged Mach number M̃
diffusive term in (43d) as and M̂.

In order to get the full version of the AUSM1 from the
central averaging scheme, additional steps are required,D1/2(uM uaF) 5 uM u(M̃)a1/2 Dj11/2F, (44)
which we shall discuss later in Section 4.2.

We now proceed to prove some interesting numerical
where M̃ 5 M̃(Uj , Uj11). And the function uM u(M), using properties of the present scheme. For the sake of algebraic
the polynomials in (19), becomes clarity, we choose in the analysis to use the variable u,

instead of M, but we recall that they are interchangeable
in the formulation of AUSM1. That is, for the ( j 1 As) face,

uM u(M) 5HuMu, if uMu $ 1,

As(M2 1 1) 1 2b(M2 2 1)2, otherwise.
(45)

uj11/2 5 aj11/2mj11/2 , (50a)

u6
j11/2 5 (uj11/2 6 uuj11/2u)/2. (50b)

Next we rewrite the AUSM1 pressure flux by using [P1]
in Eq. (20b), LEMMA 4.1. The present splitting preserves the station-

ary contact discontinuity.
2pj11/2 5 (pj 1 pj11) 2 (P 1(Mj11) 2 P 2(Mj11))pj11

(46) Proof. Let pj 5 pj11 5 p, uj 5 uj11 5 0, and rj ? rj11

across the stationary contact. We get M 1(0) 5 2M 2(0)1 (P 1(Mj) 2 P 2(Mj))pj 5 (pj 1 pj11) 2 dpj11/2 ,
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FIG. 6. Stationary contact discontinuity.

and P (0) 5 P 2(0). Hence, mj11/2 5 uj11/2 5 0, and In what follows, we shall study the positivity-preserving
property in the same fashion as analyzed by Larrout-pj11/2 5 p, yielding fj11/2 5 (0, p, 0) ;j. Thus, U/t 5 0,

and the flow remains stationary and the contact discon- urou [16].
tinuous.

LEMMA 4.3. Under the CFL-like condition,
Figure 6 shows that both the Roe and AUSM1 (also the

AUSM) splittings give rise to exact solution of a stationary
0 # l[u1

j11/2 1 (2u2
j21/2)] # 1, l 5 Dt/Dx, (51)

discontinuity. The Van Leer splitting increasingly smears
the discontinuity as calculation continues, even with the

the scheme preserves positivity of density, namely, formodification using the common speed of sound defined in
r0

j . 0 ;j, we have(40) which (as shown in Fig. 5) permits the Van Leer
splitting to resolve the stationary shock exactly.

rn
j $ 0, n . 0 ;j. (52)

LEMMA 4.2. For steady flows, the present scheme pre-
serves the constancy of total enthalpy. Proof. The mass conservation yields for j [ Z,

Proof. Assuming without loss of generality a unidirec-
rn11

j 5 rn
j 2 l( f n

r,j11/2 2 f n
r,j21/2), fr 5 ru, (53a)tional flow, e.g., u . 0, the discrete continuity equation

yields for steady flow, u1
j11/2rj 2 u1

j21/2rj21 5 0. And the
whereenergy equation gives u1

j11/2rjhtj 2 u1
j21/2rj21htj21 5 0. Hence,

we find htj 5 htj21 5 ? ? ? 5 ht0 ;j, and the proof is com-
f n

r,j11/2 5 u1
j11/2rn

j 1 u2
j11/2rn

j11 . (53b)plete.

We note that this property is not satisfied by many up- Substituting and rewriting,
wind schemes, including those by Godunov, Roe, Osher,
Steger–Warming, and Van Leer. To our knowledge, only rn11

j 5 lu1
j21/2rn

j21 1 [1 2 l(u1
j11/2 2 u2

j21/2)]rn
j

(54)those which upwind the unsplit form of the total enthalpy
1 (2lu2

j11/2)rn
j11 5 f (rn

j21 , rn
j , rn

j11 ; uj21/2 , uj11/2).will preserve this quantity (e.g., [1–3, 6, 15]).



374 MENG-SING LIOU

momentum flux (cf. (42)) becomes, by retaining only lead-
ing terms,

gj11/2 5 M F(1 2 As Dj11/2M) 2 AsM(1 2 As Dj11/2M) DF
(56)

1 P(1 2 Ds Dj11/2pM 1 ? ? ?),

where the overbar denotes the simple algebraic average,
e.g., M 5 As(Mj 1 Mj11). Since the leading terms coincide
with the central-difference approximation, the nominally
first-order upwind formula now tends to be second-order
accurate as M R 0.

4.2. Adding AUSM1 to Existing Codes

It is only a simple matter to add the AUSM1 to a code
having the Van Leer–Hänel splitting [11, 15]. First, all one
needs is to use the numerical speed of sound aj11/2 , instead
of individual aj and aj11 , for defining Mj and Mj11 . Then
define m6

j11/2 and substitute them for the ‘‘6’’ Mach num-
bers, i.e., M 1

j and M 2
j11 , used in the Van Leer–Hänel

FIG. 7. Receding flow, ML 5 2MR 5 225 by AUSM1, first-order so- splitting.
lution. It is also an easy task to implement the AUSM1 to

a basic central-differencing code, only requiring the key
interface quantities (mj11/2 , pj11/2) once aj11/2 has been de-
fined. As already derived in (46), we haveSince u1 $ 0, u2 # 0, l . 0, and r0

j . 0 ;j (54) immedi-
ately gives

2pj11/2 5 (pj 1 pj11) 2 dpj11/2 . (46)
rn

j $ 0, n . 0 ;j, (55)

We get, similarly,
under condition (51). Hence, the positivity of the density
is preserved.

2mj11/2 5 (Mj 1 Mj11) 2 (M 1
j11 2 M 2

j11) 1 (M 1
j 2 M 2

j ),
(57)And (51) is called the positivity condition. For the linear

5 (Mj 1 Mj11) 2 dmj11/2 ,case, this condition also coincides with the TVD condition
of Harten [17].

whereRemark. Similar conditions for second-order accurate
schemes can be derived as well, but allowing smaller l, as
shown in [3]. uM u(M) 5 M 1(M) 2 M 2(M), (58a)

In Fig. 7 we demonstrate the effectiveness of the positi- dmj11/2 5 uM u(Mj11) 2 uM u(Mj), (58b)
vity-preserving property for the case of a receding flow in
which two flows are moving away from each other at

andM 5 25. The AUSM1 scheme reachs a machine-zero den-
sity (vacuum condition) without difficulty, while the Roe
and Osher–Solomon schemes will immediately encounter

uM u(M) 5 HuMu, if uMu $ 1,

As(M2 1 1) 1 2b(M2 2 1)2, otherwise.
(59)negative density. We note that the initial condition consid-

ered in this case is well beyond the Osher–Solomon
scheme’s limit for preserving positive sonic speed at the
contact discontinuity, namely 2(c 2 1)(uj11 2 uj)/2 1 Since uM u . 0 ;M, the absolute sign applied to M

makes sense. On the other hand, DP in (48) can be eitheraj 1 aj11 $ 0.
Next we investigate the limiting form of the flux valid positive or negative, depending on the sign of M.

Once the quantities (dpj11/2 , dmj11/2) have been defined,for the boundary layer flow where the transverse Mach
number is small, m1/2 ! 1. Assuming m1/2 . 0, the y– the dissipative terms derived from the AUSM1 are ready
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to be added. Rewriting the AUSM1 flux in terms of the
central-difference (CD) formula yields

fAUSM1

j11/2 5 fCD
j11/2 2

aj11/2

2 FS1
2

dmj11/2 2 umj11/2uDFj

(60)

1 S1
2

dmj11/2 1 umj11/2uDFj11G2
1
2 1

0

dpj11/2

0
2 .

This is all there is to it.

5. BOUNDARY CONDITION

Two approaches are commonly used for implementing
boundary conditions: (1) extend the computation domain
with additional ‘‘ghost’’ cells and then assume some kind
of reflection (mirror-image) conditions and (2) apply data
extrapolated from the interior points, usually via character-
istic relations, at the boundary. Since the convective fluxes FIG. 8. Effect of boundary condition on the shock tube solution:

(a) spatial extrapolation, pw 5 pi ; (b) characteristic relation, (63); (c)vanish at the stationary and nonporous boundaries, the
characteristic relation, (64); and (d) Roe’s splitting with (64).second approach amounts to only requiring pressure there;

see (61) below. Moreover, it avoids the use of ghost cells.
Hence, we prefer this approach.

We assert, as evident from the following example, that After imposing the condition of zero-normal velocity
there is a tight relation between the interior scheme and component, the inviscid numerical flux is simply
the selection of an appropriate boundary conditions. In
other words, the compatibility between a numerical flux (61)fw 5 (0, pwnWw , 0), since uw 5 uWw d nWw 5 0.
scheme and boundary scheme must be observed. One ex-
ample is the shock reflection at the end (closed in this Clearly pw is the key for correcting the oscillations seen pre-
case) of a shock tube. For example, a regular extrapolated viously.
condition for steady flow, We again stress that it is desirable to have a boundary

scheme compatible with the interior scheme. Since our
interior scheme is basically constructed to be consistent
with the concept of characteristics for nonlinear fields to

pw :5 pi, d i d w relate p and u, we will begin by considering the characteris-
tic equations:

was applied in conjunction with the AUSM1 to the stan- Su
t

6
1

ra
p
tD1 (u 6 a) Su

x
6

1
ra

p
xD5 0. (62)

dard Sod problem. We see in Fig. 8a the short-wave oscilla-
tions (not odd–even decoupling) bounded between the end

This set of equations has also been used in the papers byand the shock, also reported in Ref. [26]. This phenomenon
Moretti and co-workers (see, for instance, [27]). Consider-happened only in the higher order solution and the first-
ing the flow is subsonic near the boundary, we can connectorder solution appeared to have sufficient dissipation to
the first interior and wall points (denoted by subscripts ‘‘i’’suppress the high-frequency mode, since it appeared only
and ‘‘w,’’ respectively) via the u 6 a waves. An approxi-after the boundary condition had taken effect for this prob-
mate discrete equation for uw 5 0 ;t $ 0 islem as the shock was reflected from the end. (The same

phenomenon was also evident at the other end, where the
pn11

w 5 pn
w(1 2 2lan

i ) 1 2lpn
i (an

i 6 cun
i ), l 5 Dt/Dx. (63)rarefaction wave was reflected.) Clearly this suggests that

the root of the problem lies in the treatment of the numeri-
cal boundary condition. Alternatively, an approximate form can be found by direct
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FIG. 9. Hypersonic conic flow; comparison of the AUSM1 and
FIG. 10. Sod problem; comparison of the AUSM1 and Roe solutions.Roe solutions.

lated into (65) if desired (see, for example, [28]). Thelinearization and integration of the characteristic equation
function c is a limiter whose argument is defined asof (14):

pn11
w 5 pn

i 6 un
i rn

i an
i . (64) rj 5

Dj11/2wi

Dj21/2wi
, W 5 (w1 , w2 , w3)T. (66)

Both formulas are found to dramatically remove the short-
We stress that the set of primitive variables W 5 (r, u,wave oscillation, as demonstrated in Fig. 8, and the results

are comparable with that of Roe’s splitting using the same
set of boundary conditions. In all the remaining calcula-
tions, the simpler formula (64) was used and oscillation-
free results will become evident in Section 7.

6. HIGHER-ORDER EXTENSION

The MUSCL [19] strategy for preserving monotonicity
is adopted here, via the use of a nonlinear limiter sensing
the ratio of neighboring first-differences of appropriate
variables. We choose to extrapolate the primitive variables
W, according to the formulas

WL :5 Wj 1
1
2

c(rj)(Wj 2 Wj21),

(65)

WR :5 Wj11 2
1
2

c S 1
rj11
D (Wj12 2 Wj11),

where the subscripts ‘‘L’’ and ‘‘R’’ represent the states that
take the place of ‘‘j’’ and ‘‘j 1 1’’ in the formulas derived
in Section 3 for the first-order scheme. To take grid nonuni-

FIG. 11. Problem C; comparison of the AUSM1 and Roe solutions.formity into account, grid-size weighting can also be formu-
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ht)T is employed and the minmod function is normally
chosen for its robustness in our calculations. Other forms
for the limiter function have been proposed and it is gener-
ally known that the accuracy of solution around discontinu-
ities (shock or contact) is influenced more or less by the
choice of the limiter. The dependence of the solution on
the choice of the variables chosen for extrapolation in (65)
also occurs. However, discussion of these aspects is beyond
the scope of the present paper, but it can be found in
the literature.

FIG. 13. Slowly moving contact; comparison of the first-order AUSMA majority of the results included in this paper are ‘‘sec-
(*) and AUSM1 (d) solutions.ond-order’’ accurate, unless it is stated explicitly when the

first-order solutions are presented.

For validation purposes, analytical solutions will be used
7. RESULTS AND DISCUSSION as they are available. Otherwise, the solution will be com-

pared with that obtained by using Van Leer’s and Roe’sIn this section we demonstrate the capability of the pro-
splittings as they have been established as an accurate andposed numerical flux by confirming the mathematical con-
very popular upwind scheme in use today. In some notedsequences established in previous sections for various rele-
cases, we also include the AUSM solution in order to showvant problems. The problems are listed below and will be
the improvement of the present AUSM1 splitting.discussed accordingly:

Most of this section will be devoted to establishing accu-
racy issues for all the above-listed problems, and it will be1. hypersonic conical boundary layer,
followed by study of the convergence history.2. 1D shock tube problems,

The first problem deals with the capability of accurately
3. 2D channel flow, resolving a shock and a thin viscous layer. In problem 2,

we are concerned with the accuracy in calculating unsteady4. blunt body flow,
flows. In problems 3 and 4, we consider 2D steady inviscid5. odd–even grid perturbation problem,
flows. Finally, 2D unsteady solutions are discussed in prob-

6. shock diffraction around a corner. lems 5 and 6.
A two-step Runge–Kutta type explicit scheme [28] was

used in the time-discretization for all of the above prob-
lems. Standard direction-by-direction approach to define
numerical fluxes in multidimensions was employed and the
higher order formula used in each respective direction.

7.1. Accuracy

The conical flow at My 5 7.95 over a cone of 108 half
angle was calculated using 64 cells. The profiles of pressure,
temperature, and transverse velocity component are shown
in Fig. 9 for the second-order results. The Roe and AUSM1

splittings (denoted by d and s) give nearly identical results;
interestingly the convergence rates also show remarkable
resemblance. Note that there was no need to invoke a
limiter function (i.e., setting c 5 1 in (65)) for this calcula-
tion for both splittings; it is generally desirable to limit the
use of limiters insofar as numerical stability is allowed,
especially when physically true extrema are present (the
tangential velocity component Uu in this case).

Next we consider the shock-tube problems; calculations
were done using 100 cells (unless stated otherwise) and
CFL 5 0.8. For the standard Sod problem, Fig. 10 clearly
demonstrates the comparable accuracy of the present andFIG. 12. Problem E; comparison of the AUSM, AUSM1, and Roe so-

lutions. the Roe solutions (denoted by d and s, respectively).
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We now add two more difficult problems studied by Yee
[20]; they correspond nearly to cases denoted as C and E
in [20] in terms of density and pressure ratios and initial
Mach number but without chemical effects. The initial
conditions are:

Case C: (r, p, M)L 5 (1, 1, 0), (r, p, M)R 5 (a;A;, a;A , 0), (67a)

Case E: (r, p, M)L 5 (1, 1, 0), (r, p, M)R 5 (dlA , afA , 27.8). (67b)

FIG. 15. Four percent bump problem; comparison solutions on the
bump by the AUSM1 (dd), AUSM (**), and Roe (ss) splittings.

The former involves a much stronger contact discontinuity
than the Sod problem; the latter has a shock moving slowly
against a high pressure region, with characteristics similar
to those studied by Roberts [21] and with an additional
large density jump. Figure 11 begins to show the differences
between the results obtained using the AUSM1 and Roe
splittings. Immediately behind the shock, the AUSM1 (de-
noted by d) appears to give better agreement with the
exact solution, it is more obvious in the plateau region of
the velocity profile.

In the study of Roberts [21] and Lin [22], wave-like
oscillations were observed in the Roe solution. This error

FIG. 16. Supersonic blunt body problem; Mach contours by the RoeFIG. 14. Slowly moving shock; comparison of the first-order Roe
(top) and AUSM1 (bottom) solutions. method (left) and AUSM1 (right).
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FIG. 17. Supersonic blunt body problem; comparison of the AUSM1 FIG. 19. Odd–even grid perturbation problem; profiles along the
and AUSM solutions. centerline by the AUSM1 (dd) and Roe (ss) splittings. Note that the

Roe solution was terminated earlier.

To further illustrate the dispersive error introduced byalso appears for this problem in Fig. 12 for the Roe solution
(given by s). Both AUSM1 and AUSM results are seen numerical schemes in a slowly moving flow, we show in

Fig. 14 the results for a shock slowly (50 time steps perto be free from this behavior, but AUSM (denoted by *)
gives rise to a glitch in the pressure due to a large gradient cell) moving to the left. The results are presented in terms

of a discrete representation of integral of the Riemannat the contact discontinuity. It is noted that the AUSM1

results have a higher overshoot value, immediately behind variables, i.e., e dp 6 radu and e dp 2 a2dr. The Roe
solution clearly shows the wave-like error trailing behindthe shock, than the other two results; however, we deem

this point less significant (although not desirable) than the the shock for the two downstream-running characteristics;
the AUSM1 solution maintains nearly constant values, ex-ones mentioned above. The pressure glitch by the AUSM

scheme is further confirmed by investigating an isolated cept with a jump at the shock, as it should be.
We turn now to 2D problems. The first case in thisslowly moving contact discontinuity in the first-order accu-

rate solution; the results by AUSM and AUSM1 are dis- category is the standard 4% bump in a channel with
My 5 1.4. The results were obtained using the AUSM1,played in Fig. 13, revealing a dramatic difference between

them. The AUSM calculation did not seem to suggest AUSM, and Roe splittings with minmod limiter, and
CFL 5 0.9 on a 132 3 68 grid. The profiles on the bumpinstability in the sense of a disturbance amplifying without

bound, but rather resulting in a corrupted solution in all wall in Fig. 15 show that three solutions agree well and all
give sharp representation of three shocks, two respectivelyvariables. On the other hand, the AUSM1 solution behaves

as it should. located at the leading and trailing edge of the bump and

FIG. 18. Odd–even grid perturbation problem; Mach contours by the Roe method (top) and AUSM1 (bottom).
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FIG. 20. Supersonic corner flow problem; density contours of first-order solution: (a) Gudonov method; (b) Roe method; and (c) AUSM1.

one located further downstream and produced by the re- a quiescent region in a long constant-area channel. The
computation grid is perturbed at the centerline by a veryflection of the leading-edge shock from the other wall.

Let us now consider a supersonic My 5 6.0 flow over a small magnitude, 61026 in our case, alternately at odd and
even points. The Roe solution, in Fig. 18 (top), quicklycircular cylinder. This seemingly benign problem in fact

turns out to be rather daunting for some prominent develops an odd–even decoupling behavior, eventually
leading to a catastrophic solution. The present method, onschemes such as the Osher and Roe splittings [6, 22, 23].

The so-called ‘‘carbuncle’’ phenomenon produced by the other hand, still preserves the plane shock even after
a long time, as shown in Fig. 18 (bottom). The variableRoe’s method is exhibited in Fig. 16, in comparison with

that by the AUSM1. Figure 17 displays the solutions by profiles along the centerline, corresponding to the con-
tours, are displayed in Fig. 19 for comparison—thethe AUSM and AUSM1, showing a crisp shock resolution

at the centerline. In particular, the AUSM1 (denoted by AUSM1 gives a monotone and well-behaved solution.
The last problem is the diffraction of a supersonic shockd) exhibits the evidence of improvement over the AUSM

(denoted by s), by eliminating the postshock overshoot, moving over a 908 bend. Quirk [5] has painstakingly shown
the complexity of the flow using grid refinement to resolveand with nearly no numerical shock point.

Next, we study another interesting and benign problem, the fine details. He pointed out that there was some numer-
ical difficulty encountered in the use of the Roe splitting.first reported by Quirk [5]. A plane shock is moving into
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FIG. 22. Convergence history for the 4% bump problem; second-
order solution.

for the blunt body problem, showing the effects of order
of spatial accuracy, grid size, and CFL number. It is surpris-
ing to see that the second-order method in fact converges
faster than the first-order method, even with the shock.
On the other hand, it also reaffirms the benefit of achieving
faster convergence rate by using larger CFL number andFIG. 21. Supersonic corner flow problem; density contours of second-

order (with minmod limiter) AUSM1 solution on 400 3 400 grid. the adverse effect of slowing down convergence by running
on a fine grid, as consistent with other published results.

8. CONCLUDING REMARKSThus it would be an interesting problem to test whether
the present AUSM1 would have any difficulty. First we

In this paper we presented the construction and analysis
show in Fig. 20 the density contours of first-order AUSM1,

of a new numerical flux scheme—AUSM1. We investi-
Roe, and Godunov solutions on a 71 3 71 grid, which is

gated the associated mathematical properties and proved
extremely coarse to be able to reveal any intricate details.

the positivity-preserving property with a CFL-like condi-
Nevertheless, it confirms the findings of Woodward and

tion. We proposed an enhanced set of Mach number and
Collela [24] and Quirk [5] that the Godunov scheme can

pressure polynomials, contributing to improvement in ac-
yield discontinuous expansion fans as seen in Fig. 20a—

curacy. Furthermore, a properly defined numerical speed
this, apparently violating the entropy condition, clearly

of sound for the interface Mach number was shown to give
causes concern. Figures 20b and 20c show that both the

exact resolution for an 1D steady shock and significantly
Roe splittings (with entropy fix) and AUSM1, respectively,

improved shock resolution in 2D cases. The reliability of
are able to break the numerical expansion shock. A fine

the new scheme was evident as well in calculating some
grid (400 3 400) calculation was then performed using the

unsteady problems that have failed prominent flux
minmod limiter and CFL 5 0.4 (higher value, while still

schemes. We also stress that in addition to the demon-
stable, gave oscillatory contours near the internal shock)

strated accuracy and reliability, the AUSM1 requires com-
and the result is depicted in Fig. 21. The intricacy associated
with this flow is astonishingly rich, although what is con-
tained at this grid level is still not nearly comparable to
that captured by Quirk [5], who used a sophisticated adap-
tive grid strategy.

7.2. Convergence History of Residual

The convergence history for the supersonic 4%-bump
problem is displayed in Fig. 22 in terms of L2 norm, exhib-
iting that the Roe solution stalls after having dropped about
five orders, while the AUSM1 and AUSM residuals con-
tinue to decrease to machine accuracy, following roughly
the same history.

FIG. 23. Convergence history for the supersonic blunt body problem.Figure 23 compares the AUSM1 convergence history
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